跳转至

数电笔记

第二章 (15分)⭐⭐

  • 逻辑代数的基本公式和常用公式;
  • n逻辑代数的基本定理;
  • n逻辑函数的各种表示方法及相互转换;
  • n逻辑函数的化简方法;

基本概念

  • 逻辑是指事物的因果关系
  • 逻辑代数中的变量称为逻辑变量,用大写字母 表示。
  • 0和1称为逻辑常量,并不表示数量的大小

基本逻辑运算

  • 基本逻辑运算有与、或、非

image-20231205113819940

  • 复合逻辑运算种类较多,常见的如下

image-20231205113908782

异或的特性:

  • 奇数个1相异或,结果为1
  • 偶数个1相异或,结果为0
  • 任何数异或0都不变

逻辑运算的基本公式

image-20231205114227162

最常用的是第8条(反演律)和第17条(分配律

这里的分配律可以理解为:乘法对加法也能分配,加法对乘法也能分配

推论公式

image-20231205114508149

  • 吸收律:短项吸收长项(长项包含短项的前提之下)

  • 反变量抵消:两个项中含有反变量,则反变量可以去除(两个变量数目和种类相同)

  • 混合变量吸收:正负相对,余完全

image-20231205115356487

逻辑函数

事物之间的逻辑关系可以通过描述逻辑输 入变量和输出变量的变化关系来确定,这 是一种函数关系,称为逻辑函数。记作\(Y = F(A,B,C,\cdots\cdots)\)

例如\(Y = A\cdot B\)就是一个两输入一输出的逻辑函数

逻辑函数的表现形式

举重比赛中有A、B、C三个裁判,A为 主裁,B、C为副裁,规定当主裁和至少一 个副裁认定成绩有效时,则运动员成绩Y有 效;否则无效

输入变量A、B、C分别代表主 裁和两个副裁,同意为1;输出变量Y代表 运动员成绩,有效为1

  1. 真值表

image-20231205120427359

  1. 逻辑函数式

image-20231205120445447

  1. 逻辑图

image-20231205120457248

  1. 波形图

image-20231205120507379

逻辑函数的化简

  • 公式法:布尔代数
  • 图形法:卡诺图

变形公式

  • 反函数:全部取反
  • 对偶式:除了变量本身,其余全部取反

第四章(35分) ⭐⭐⭐⭐⭐⭐

  • 组合电路的分析

  • 组合电路的设计:

  • 用门电路构成:

    graph LR
    S(写真值表)--写式-->L(逻辑式)--化简-->E(最简与或式)
    S--填图-->K(卡诺图)--化简-->E
    
  • 用中规模组件设计逻辑电路

  • 典型组件

  • 编码器

  • 译码器
  • 数据选择器
  • 加法器
  • 数值比较器

  • 了解PLD的基本电路结构

概述

image-20231205155803311

设计

image-20231206090933409